(1)x2-4x-1=0; (2)x2+3x-2=0;(3)2x2+3x+3=0; (4)(2x-1)2=x(3x+2)-7.
17.(8分)小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?
(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.
最新北师大版九年级数学上册精品课件设计 2
最新北师大版九年级数学上册精品课件设计
18.(8分)(南充中考)已知关于x的一元二次方程(x-1)(x-4)=p2,p为实数. (1)求证:方程有两个不相等的实数根;
(2)p为何值时,方程有整数解.(直接写出三个,不需说明理由)
19.(10分)观察下列一元二次方程,并回答问题: 第1个方程:x2+x=0; 第2个方程:x2-1=0; 第3个方程:x2-x-2=0; 第4个方程:x2-2x-3=0; …
(1)第2 016个方程是____________________;
(2)直接写出第n个方程,并求出第n个方程的解;
(3)说出这列一元二次方程的解的一个共同特点.
最新北师大版九年级数学上册精品课件设计 3
最新北师大版九年级数学上册精品课件设计
20.(12分)(株洲中考)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.
(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
参
1.A 2.B 3.C 4.C 5.B 6.C 7.D 8.D 9.C 10.B 11.-3 12.-6或1 13.6 14.3 15.①② 16.(1)x1=5+2,x2=-5+2.
-3+17-3-17(2)x1=,x2=.
22
(3)∵a=2,b=3,c=3,∴b2-4ac=32-4×2×3=9-24=-15<0,∴原方程无实数根. (4)原方程可化为4x2-4x+1=3x2+2x-7,∴x2-6x+8=0.∴(x-3)2=1.∴x-3=±1.∴x1=2,x2=4.
17.(1)设其中一个正方形的边长为x cm,则另一个正方形的边长为(10-x)cm.由题意,得x2+(10-x)2=58.解得x1=3,x2=7.4×3=12,4×7=28.答:小林把绳子剪成12 cm和28 cm的两段.
22
(2)假设能围成.由(1)得x+(10-x)=48.化简得x2-10x+26=0.∵b2-4ac=(-10)2-4×1×26=-4<0,∴此方程没有实数根.∴小峰的说法是对的.
18.(1)证明:化简方程,得x2-5x+(4-p2)=0.Δ=(-5)2-4(4-p2)=9+4p2,∵p为实数,p2≥0,∴9+4p2>0,即Δ>0.∴方程有两个不相等的实数根.(2)当p为0,2,-2时,方程有整数解. 19.(1)x2-2 014x-2 015=0
(2)第n个方程是x2-(n-2)x-(n-1)=0,解得x1=-1,x2=n-1. (3)这列一元二次方程的解的一个共同特点:有一根是-1.
20.(1)△ABC是等腰三角形.理由:∵x=-1是方程的根,∴(a+c)×(-1)2-2b+(a-c)=0.∴a+c-2b+a-c=0.∴a-b=0.∴a=b.∴△ABC是等腰三角形.
(2)∵方程有两个相等的实数根,∴(2b)2-4(a+c)(a-c)=0.∴4b2-4a2+4c2=0.∴a2=b2+c2.∴△ABC是直角三角形.
(3)∵△ABC是等边三角形,∴(a+c)x2+2bx+(a-c)=0可整理为2ax2+2ax=0.∴x2+x=0.解得
最新北师大版九年级数学上册精品课件设计 4
最新北师大版九年级数学上册精品课件设计
x1=0,x2=-1.
最新北师大版九年级数学上册精品课件设计 5