编号: 教务主任签字: 教 学 过 程 二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . 222 ①y=x-4x+1; ②y=2x; ③y=2x+4x; ④y=-3x; 2 ⑤y=-2x-1; ⑥y=mx+nx+p; ⑦y =(4,x) ; ⑧y=-5x。 22、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t+2t,则t=4秒时,该物体所经过的路程为 。 223、若函数y=(m+2m-7)x+4x+5是关于x的二次函数,则m的取值范围为 。 m -24、若函数y=(m-2)x+5x+1是关于x的二次函数,则m的值为 。 m2 +16、已知函数y=(m-1)x+5x-3是二次函数,求m的值。 二次函数的对称轴、顶点、最值 4ac-b(技法:如果解析式为顶点式y=a(x-h)+k,则最值为k;如果解析式为一般式y=ax+bx+c则最值为 4a221.抛物线y=2x+4x+m-m经过坐标原点,则m的值为 。 22.抛物y=x+bx+c线的顶点坐标为(1,3),则b= ,c= . 23.抛物线y=x+3x的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 24.若抛物线y=ax-6x经过点(2,0),则抛物线顶点到坐标原点的距离为( ) A.13 B.10 C.15 D.14 25.若直线y=ax+b不经过二、四象限,则抛物线y=ax+bx+c( ) A.开口向上,对称轴是y轴 B.开口向下,对称轴是y轴 C.开口向下,对称轴平行于y轴 D.开口向上,对称轴平行于y轴 126.已知抛物线y=x+(m-1)x- 的顶点的横坐标是2,则m的值是_ . 427.抛物线y=x+2x-3的对称轴是 。 28.若二次函数y=3x+mx-3的对称轴是直线x=1,则m= 。 n9.当n=______,m=______时,函数y=(m+n)x+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________. 210.已知二次函数y=x-2ax+2a+3,当a= 时,该函数y的最小值为0. 211.已知二次函数y=mx+(m-1)x+m-1有最小值为0,则m= ______ 。 212.已知二次函数y=x-4x+m-3的最小值为3,则m= 。 222 函数y=ax2+bx+c的图象和性质 1.抛物线y=x+4x+9的对称轴是 。 22.抛物线y=2x-12x+25的开口方向是 ,顶点坐标是 。 3.试写出一个开口方向向上,对称轴为直线x=-2,且与y轴的交点坐标为(0,3)的抛物线的解析式 。 4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标: 12122(1)y= x-2x+1 ; (2)y=-3x+8x-2; (3)y=- x+x-4 24 225.把抛物线y=x+bx+c的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x-3x+5,试求b、c的值。 2 26.把抛物线y=-2x+4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。 7.某商场以每台2500元进口一批彩电。如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元? 函数y=a(x-h)2的图象与性质 1.填表: 抛物线 开口方向 对称轴 y3x2 2顶点坐标 y221x32 22 2.已知函数y=2x,y=2(x-4),和y=2(x+1)。 (1)分别说出各个函数图象的开口方、对称轴和顶点坐标。 222(2)分析分别通过怎样的平移。可以由抛物线y=2x得到抛物线y=2(x-4)和y=2(x+1)? 23.试写出抛物线y=3x经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。 2(1)右移2个单位;(2)左移 个单位;(3)先左移1个单位,再右移4个单位。 3 124.试说明函数y= (x-3) 的图象特点及性质(开口、对称轴、顶点坐标、增减性、最值)。 2 125.二次函数y=a(x-h)的图象如图:已知a= ,OA=OC,试求该抛物线的解析式。 2 二次函数的增减性 1.二次函数y=3x-6x+5,当x>1时,y随x的增大而 ;当x<1时,y随x的增大而 ;当x=1时,函数有最 值是 。 22.已知函数y=4x-mx+5,当x> -2时,y随x的增大而增大;当x< -2时,y随x的增大而减少;则x=1时,y的值为 。 23.已知二次函数y=x-(m+1)x+1,当x≥1时,y随x的增大而增大,则m的取值范围是 . 2 1254.已知二次函数y=- x+3x+ 的图象上有三点A(x1,y1),B(x2,y2),C(x3,y3)且3b>c,且a+b+c=0,则它的图象可能是图所示的( ) yyyy O1x1x O1xO1Ox DABC 226.二次函数y=ax+bx+c的图象如图5所示,那么abc,b-4ac, 2a+b,a+b+c 四个代数式中,值为正数的有( ) A.4个 B.3个 C.2个 D.1个 c27.在同一坐标系中,函数y= ax+c与y= (a 0时,y随x的增大而增大,则二次函数y=kx+2kx的图象大致为图中的( ) x A B C D 210.已知抛物线y=ax+bx+c(a≠0)的图象如图所示,则下列结论: ①a,b同号; ②当x=1和x=3时,函数值相同; ③4a+b=0; ④当y=-2时,x的值只能取0; 其中正确的个数是( ) A.1 B.2 C.3 D.4 211.已知二次函数y=ax+bx+c经过一、三、四象限(不经过原点和第二象限)则直线y=ax+bc不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 二次函数与x轴、y轴的交点(二次函数与一元二次方程的关系) 1. 如果二次函数y=x+4x+c图象与x轴没有交点,其中c为整数,则c= (写一个即可) 22. 二次函数y=x-2x-3图象与x轴交点之间的距离为 23. 抛物线y=-3x+2x-1的图象与x轴交点的个数是( ) A.没有交点 B.只有一个交点 C.有两个交点 D.有三个交点 24. 如图所示,二次函数y=x-4x+3的图象交x轴于A、B两点, 交y 轴于点C, 则△ABC的面积为( ) A.6 B.4 C.3 D.1 4925. 已知抛物线y=5x+(m-1)x+m与x轴的两个交点在y轴同侧,它们的距离平方等于为 ,则m的值25为( ) A.-2 B.12 C.24 D.48 2 26. 若二次函数y=(m+5)x+2(m+1)x+m的图象全部在x轴的上方,则m 的范围是 27. 已知抛物线y=x-2x-8, (1)求证:该抛物线与x轴一定有两个交点; (2)若该抛物线与x轴的两个交点为A、B,且它的顶点为P,求△ABP的面积。 取值函数解析式的求法 一、已知抛物线上任意三点时,通常设解析式为一般式y=ax+bx+c,然后解三元方程组求解; 1.已知二次函数的图象经过A(0,3)、B(1,3)、C(-1,1)三点,求该二次函数的解析式。 2.已知抛物线过A(1,0)和B(4,0)两点,交y轴于C点且BC=5,求该二次函数的解析式。 二、已知抛物线的顶点坐标,或抛物线上纵坐标相同的两点和抛物线上另一点时,通常设解析式为顶点式y=a(x2-h)+k求解。 3.已知二次函数的图象的顶点坐标为(1,-6),且经过点(2,-8),求该二次函数的解析式。 4.已知二次函数的图象的顶点坐标为(1,-3),且经过点P(2,0)点,求二次函数的解析式。 三、已知抛物线与轴的交点的坐标时,通常设解析式为交点式y=a(x-x1)(x-x2)。 5.二次函数的图象经过A(-1,0),B(3,0),函数有最小值-8,求该二次函数的解析式。 6.已知x=1时,函数有最大值5,且图形经过点(0,-3),则该二次函数的解析式 。 27.抛物线y=2x+bx+c与x 轴交于(2,0)、(-3,0),则该二次函数的解析式 。 2 228.若抛物线y=ax+bx+c的顶点坐标为(1,3),且与y=2x的开口大小相同,方向相反,则该二次函数的解析式 。 29.抛物线y=2x+bx+c与x 轴交于(-1,0)、(3,0),则b= ,c= . 10.若抛物线与x 轴交于(2,0)、(3,0),与y轴交于(0,-4),则该二次函数的解析式 。 11.根据下列条件求关于x的二次函数的解析式 (1) 当x=3时,y最小值=-1,且图象过(0,7) 3(2) 图象过点(0,-2)(1,2)且对称轴为直线x= 2 (3) 图象经过(0,1)(1,0)(3,0) (4) 当x=1时,y=0; x=0时,y= -2,x=2 时,y=3 (5) 抛物线顶点坐标为(-1,-2)且通过点(1,10) 11.当二次函数图象与x轴交点的横坐标分别是x1= -3,x2=1时,且与y轴交点为(0,-2),求这个二次函数的解析式 212.已知二次函数y=ax+bx+c的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。 11113.知二次函数图象顶点坐标(-3, )且图象过点(2, ),求二次函数解析式及图象与y轴的交点坐标。 22 14.已知二次函数图象与x轴交点(2,0), (-1,0)与y轴交点是(0,-1)求解析式及顶点坐标。 1215.若二次函数y=ax+bx+c经过(1,0)且图象关于直线x= 对称,那么图象还必定经过哪一点? 2 2216.y= -x+2(k-1)x+2k-k,它的图象经过原点,求①解析式 ②与x轴交点O、A及顶点C组成的△OAC面积。 117.抛物线y= (k2-2)x2+m-4kx的对称轴是直线x=2,且它的最低点在直线y= - 2 x+2上,求函数解析式 课内作业: 课后反思: