您好,欢迎来到爱玩科技网。
搜索
您的当前位置:首页The initial gluon multiplicity in heavy ion collisions

The initial gluon multiplicity in heavy ion collisions

来源:爱玩科技网
0002 lJu 11 1v8017000/hp-pe:hviXraTheinitialgluonmultiplicityinheavyioncollisions.

AlexKrasnitz

UCEH,UniversidadedoAlgarve,CampusdeGambelas,P-8000Faro,Portugal.

RajuVenugopalan

PhysicsDepartment,BrookhavenNationalLaboratory,Upton,NY11973,USA.

February1,2008

Abstract

Theinitialgluonmultiplicityperunitareaperunitrapidity,dN/L2/dη,inhighenergynuclearcollisions,isequaltofN(g2µL)(g2µ)2/g2,withµ2proportionaltothegluondensityperunitareaofthecollidingnuclei.ForanSU(2)gaugetheory,wecomputefN(g2µL)=0.14±0.01forawiderangeing2µL.ExtrapolatingtoSU(3),wepredictdN/L2/dηforvaluesofg2µLintherangerelevanttotheRelativisticHeavyIonColliderandtheLargeHadronCollider.Wecomputetheinitialgluontransversemomentumdistribution,dN/L2/d2k⊥,andshowittobewellbehavedatlowk⊥.

Atopicofconsiderablecurrentinterestisthepossibilityofforminganequilibratedplasmaofquarksandgluons,aquark–gluonplasma(QGP),inveryhighenergynuclearcollisions.ExperimentalsignaturesofsuchaplasmamayprovideinsightintothenatureoftheQCDphasediagramatfinitetemperatureandbaryondensity[1].

Equallyinteresting,istheinformationthatheavyioncollisionsmayprovideaboutthedistributionsofpartonsinthewavefunctionsofthenucleibeforethecollision.Atveryhighenergies,thegrowthofpartondistributionsinthenuclearwavefunctionsatu-rates,formingastateofmattersometimescalledaColorGlassCondensate(CGC)[2].ThecondensateischaracterizedbyabulkmomentumscaleQs.IfQs≫ΛQCD,thepropertiesofthiscondensate,albeitnon–perturbative,canbestudiedinweakcoupling.Thepartonsthatcomprisethiscondensatearefreedinacollision.Sincethescaleofthecondensate,Qs,istheonlyscaleintheproblem,theinitialmultiplicityandenergydistributionsofproducedgluonsatcentralrapiditiesaredeterminedbythisscalealone.Wewillbrieflydiscusslatertherelationofthesequantititiestophysicalobservables.Theabovestatementsmaybequantifiedinaclassicaleffectivefieldtheoryapproach(EFT)tohighenergyscattering[4].TheEFTandp⊥≫ΛQCD,(x∼p⊥/

√isclassicalbecause,atcentralrapidities,wherex≪1decreasingxgivingrisetolargeoccupationnumbers.Briefly,theEFTseparatespartonsinahadron(ornucleus)intostatic,highxvalenceandhardgluesources,and“wee”smallxfields.Foralargenucleusintheinfinitemomentumframe,thehardsourceswithcolorchargedensityρ,arerandomlydistributedinthetransverseplanewiththedistribution

P([ρ])=exp−

󰀁

1

IntheclassicalEFT,thisdivergenceislogarithmic.Thenumberdistributionshavetheform

nk⊥∝

1

k⊥

󰀋4

ln

󰀁

k⊥

2

󰀃󰀅

k

|π(k)|+ω(k)|φ(k)|

222

󰀈

,(3)

whereφ(k)isthekthmomentumcomponentofthefield,π(k)isitsconjugatemomentum,andω(k)isthecorrespondingeigenfrequency.Theaverageparticlenumberofthek-th

3

modeisthen

N(k)=ω(k)󰀑|φ(k)|󰀒=

2

󰀆

8

therighthandsideof(6)willdiverge.TheexpressioninEq.(4)canthenstillbefor-mallydeterminedintheCoulombgaugebutitsinterpretationasaparticlenumberisproblematic.Thissituationdeservesspecialattentionandwillbediscussedindetailelsewhere.Wedidnotobserveanyeffectsofmetastabiltywithintherangeofparame-tersofthecurrentnumericalstudy.Inparticular,weverifiedtheconvergenceofEq.(6)withrespecttotheupperlimitofintegration.

Wenowpresentourresultsusingboththetechniquesdiscussed.Webeginwiththenumberdistribution,whichcanonlybecomputedinCoulombgauge.Wehaveverified,forg2µL=35.35,thatintherangeofvaluesofg2µaconsideredherethesystemisclosetothecontinuumlimit.Thisisconsistentwithourearlieranalysisofthelatticespacingdependenceofamoreultraviolet-sensitivequantity,theenergydensity[15].InFig.1a,

weplotthegluonnumberdistribution,n(k⊥)≡dN/L2/dk2

⊥=N(k⊥)/(2π)2versusk⊥forfixedg2µL=35.5,butfordifferentvaluesofthelatticespacingg2µa.Forlargek⊥,thefinestlattice(g2µa=0.138)agreeswellwiththelatticeperturbationtheory(LPTh)analogueofEq.(2).Atsmallerk⊥,thedistributionissofter,andconvergestoaconstantvalue.InFig.1b,weplotthegluondistributionintheinfrared,atfixedg2µa,fordifferentg2µL(148.5and297).Wenoticethatthesedistributionsarenearlyuniversalandindependentofg2µL!Also,theconvergenceofthedistributiontoaconstantvalueismoreclearlyvisibleinFig.1b.

Whenk⊥≤g2µ,non–perturbativeeffectsqualitativelyaltertheperturbativenum-berdistribution,renderingitfiniteintheinfrared.Unfortunately,sincetheseeffectsarelarge,ananalyticalunderstandingofthebehavioratlowk⊥islacking.Ourre-sults,despitebeinguniversal,arenotsimplyfitbyanyofthephysicallymotivatedparametrizationswehaveconsidered.Fromourpreviousdiscussion,theformula

1dη

=1

g2µLg2µa

fN(cooling)fN(Coulomb)fN(res.)×103

35.36.276

.116±.001.127±.002

14±270.71.276

.119±.001.125±.0027.8±0.2106.10.207.127±.001.135±0.0018.9±0.2148.5.29

.138±.001142±.0015.6±0.1212.1.41

.146±.001.145±.0017.12±0.08297.0.29

.151±.001.153±.0014.83±.04

Table1:ValuesoffNvsg2µL,forfixedg2µa,plottedinFig.2.fN(res.)isdefinedinRef.[18].

WecancompareourresultsforthenumberdistributiontotheonepredictedbyA.H.Mueller[17].IntermsofQsandR,wecanre–writeEq.7as

1

=cN

2Nc−1

4π2αS

Q2s.

AlargenumberofmodelsofparticleproductioninnuclearcollisionsatRHICand

LHCenergiescanbefoundintheliterature.AnicerecentsummaryoftheirvariouspredictionsandrelevantreferencescanbefoundinthecompilationofRef.[21].NaivelyextrapolatingourresultstoSU(3),wefindforAu-AucentralcollisionsatRHICenergies,dN/dη∼950forfN=0.132±0.006(g2µL≈120—wetakethemeanofthe106and148coolingpoint).Similarly,forLHCenergiesfN=0.148±0.002(g2µL∼255—themeanofthe212and297coolingpoint),onefindsdN/dη∼4300.Inparticular,comparingourpredictionswiththoseofpQCDbasedmodels[19],wefindournumberstobeinroughagreement.However,ifweincludeaKfactorlikemanyofthesemodelsdo,ournumberswillberoughlyafactorof2larger.

Muellerestimatesthenon–perturbativecoefficientcNtobeoforderunity.IfwetakefN=0.14±0.01,asisthecaseformuchoftherangestudied,wefindcN=1.29±0.09,anumberoforderunityaspredictedbyMueller.Despitethiscloseagreement,thetransversemomentumdistributions,showninFig.1aand1b,anddiscussedearlier,look

2

quitedifferentfromMueller’sguessofθ(Q2s−k⊥).Theθ–functiondistributionwasonlyaroughguesstorepresentaqualitativechangeofthedistributionsatk⊥∼Qs.

ThereisconsiderableuncertainityinthevalueofQsbecausethegluondensitiesattherelevantxandQ2areill–known.SincethemultiplicitydependsquadraticallyonQs,apredictionofthesameisperforceunreliable.Distinguishingbetweendifferentmodelswillthereforerequire,atthe√veryleast,testingtheirpredictionsforthescalingofmultiplicitieswithAandwith

ln(s/s0)),wheres0isaconstant.Inthelattercase[23],itisclaimedthata

goodfittothemultiplicityfromexistinghighenergyhadronscatteringdataisobtained.DatafromRHICwillhelpconstraintheenergydependenceofQs.

6

Thereadershouldalsonotethatourrelationsarederivedonlyfortheinitialpartonmultiplicitydistributionsatcentralrapidities.Theseprovidetheinitialconditionsforthesubsequentevolutionofthesystem,whichcanbeinvestigatedinatransportap-proach[17,24].Therateofchemicalequilibration,anduncertainitiesduetohadroniza-tionalsohavetobetakenintoaccountinpredictionsofobservablessuchaschargedhadronmultiplicities.Conversely,theseobservablesmayhelpconstrainthesaturationscaleQs,andinformusabouttheveryearlieststagesofnuclearcollisons.

Insummary,wehavederivedanon–perturbativerelationbetweenthemultiplicityofproducedpartonsandthesaturationscaleofpartondistributionsinhighenergynuclearcollisions.Wehavecomputednumberdistributionswhichhavethepredictedperturbativebehaviorintheultraviolet,andarefiniteintheinfrared.Atpresent,inourapproach,weareonlyabletomakequalitative“ball-park”predictions.However,wehavedevelopedaframeworkinwhichthesecanbequantifiedandextendedinaconsistentmannertostudyalargenumberoffinalstateobservablesinheavyioncollisions.

Acknowledgments

WewouldliketothankLarryMcLerranandAlMuellerforveryusefuldiscussions.R.V.’sresearchwassupportedbyDOEContractNo.DE-AC02-98CH10886.TheauthorsacknowledgesupportfromthePortugueseFCT,undergrantsCERN/P/FIS/1203/98andCERN/P/FIS/15196/1999.

References

[1]seeforinstance,theproceedingsofQuarkMatter99,Nucl.Phys.A661(1999).[2]LarryMcLerran,privatecommunication.

[3]A.H.Mueller,Nucl.Phys.558285(1999);R.Venugopalan,hep-ph/9907209.[4]L.McLerranandR.Venugopalan,Phys.Rev.D492233(1994);D493352(1994);

D502225(1994).[5]Hencetheanalogytospinglasses.SeeR.V.GavaiandR.Venugopalan,Phys.Rev.

D545795(1996).[6]A.Ayala,J.Jalilian-Marian,L.McLerran,andR.Venugopalan,Phys.Rev.D52,

2935(1995);ibid.D53458(1996).[7]J.Jalilian–Marian,A.Kovner,L.McLerran,andH.Weigert,Phys.Rev.D55(1997)

5414;J.Jalilian-Marian,A.Kovner,A.Leonidov,andH.Weigert,Nucl.Phys.B504415(1997);J.Jalilian-Marian,A.Kovner,andH.Weigert,Phys.Rev.D59014015(1999);L.McLerranandR.Venugopalan,Phys.Rev.D59094002(1999).

7

[8]M.Arneodoetal.,hep-ph/9610423,inProceedingsofworkshoponfuturephysicsat

HERA,Hamburg,Sept.25th-26th,(1995);Proceedingsofthe2ndeRHICworkshop,Yale,April6th-8th,(2000),tobepublished.[9]M.GyulassyandL.McLerran,Phys.Rev.C56(1997)2219.

[10]A.Kovner,L.McLerranandH.Weigert,Phys.RevD523809(1995);D526231

(1995).[11]Y.V.KovchegovandD.H.Rischke,Phys.Rev.C56(1997)1084;S.G.Matinyan,

B.M¨ullerandD.H.Rischke,Phys.Rev.C56(1997)2191;Phys.Rev.C57(1998)1927;Xiao-fengGuo,Phys.Rev.D59094017(1999).[12]A.KrasnitzandR.Venugopalan,hep-ph/9706329,hep-ph/9808332.[13]A.KrasnitzandR.Venugopalan,Nucl.Phys.B557237(1999).[14]A.KrasnitzandR.Venugopalan,hep-ph/0004116.

[15]A.KrasnitzandR.Venugopalan,Phys.Rev.Lett.84,4309(2000).

[16]seeforinstance,I.Balitsky,Phys.Rev.D60014020(1999);Y.V.Kovchegovand

A.H.Mueller,Nucl.Phys.B529451(1998);S.A.Bass,B.M¨uller,andW.Poschl,J.Phys.G25L109(1999).[17]A.H.Mueller,Nucl.Phys.B572,227(2000);Phys.Lett.B475,220(2000).[18]ThediscrepancybetweenCoulombgaugenumbersandcoolingnumbersislikelydue

togaugeartifacts.TheCoulombgaugenumberaftercooling(thirdrowofTable.1)—inprincipleclosetozero—addedtothegaugeinvariantcoolingnumber,agreescloselywiththeCoulombgaugenumberbeforecooling.[19]K.J.Eskola,K.Kajantie,P.V.Ruuskanen,andK.Tuominen,Nucl.Phys.B570,

379(2000);K.J.Eskola,B.M¨uller,andX-N.Wang,nucl-th/9608013;K.Geiger,Phys.Rep.258(1995)237;X-N.Wang,Phys.Rept.280,287(1997);N.Hammon,H.StockerandW.Greiner,Phys.Rev.C61,014901(2000).[20]L.McLerran,hep-ph/9903536.

[21]N.ArmestoandC.Pajares,hep-ph/0002163.[22]Y.V.Kovchegov,Phys.Rev.D61:074018(2000).

[23]E.M.LevinandM.G.Ryskin,Phys.Repts.1(1990)267.[24]J.BjorakerandR.Venugopalan,inpreparation.

8

+23+23+23+23+23+23+23+32+3233+2+2+2+2+2+2++2+2+++2+222

222

2222

22222

22222

0.05

++0.043

3+3

0.03

b

n(k⊥)

0.02

0.01

0

+3+3+33++33++3+33++3+33+3++33++3+33++3+3+3

0

0.2

0.4

0.6

0.8

1

Figure2:ThefunctionfN,definedinEq.(7)asafunctionofg2µL,obtainedbytherelaxationmethod(plusses)andbytheCoulombgaugefixing(diamonds).Thevaluesofg2µaare0.276forg2µL=35.35andg2µL=70.8;0.29forg2µL=148.5andg2µL=297;and0.414forg2µL=212.

g2µ

k⊥

Figure3:Gluondispersionrelationω(k⊥)obtainedfromEq.(4),forthevalues70.8(diamonds),148.5(plusses),and297(squares),withthevaluesofg2µaasinFigure2.

10

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- aiwanbo.com 版权所有 赣ICP备2024042808号-3

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务