您好,欢迎来到爱玩科技网。
搜索
您的当前位置:首页Bipartite Graph Reinforcement Model for Web Image Annotation

Bipartite Graph Reinforcement Model for Web Image Annotation

来源:爱玩科技网


Bipartite Graph Reinforcement Model for Web Image Annotation

Proceedings of the 15th International Conference on Multimedia 2007, ACM

论文链接:

  • 文本信息与视觉特征相结合
  • BGRM

  • 1、根据图像相关本文生成初始候选标注(词)

初始候选标注不完全、不准确

  • 2、(1)在大型图像数据库中检索初始词,得到一些语义相关的图像(通过基于文本的图像检索系统)【若检索到的图像视觉上与目标图像相似且描述文本与初始词相近,则两图像相似】

(2) 在语义相关的图像中,选取视觉相关的图像(通过基于内容的相似度方法),获取这些图像中的文本描述,提取扩展候选词

为了获得更多候选标注

  • 3、分别对初始候选词和扩展候选词排序
  • (1)初始候选词排序

视觉排名:检索结果图像和目标图像视觉相似度的均值

  • (2)扩展词排序

排序:用视觉和文本信息衡量候选词与目标图像的一致性多少

  • 4、用所有候选词构建二分图,重排序所有候选词、迭代、收敛

  • (1)二分图权重:考虑是否是扩展词和相似程度

  • (2)强化学习
    迭代直到收敛

去除噪音词

  • 5、最终注释确定方案

  • 与HITS(Hypertext Induced Topic Selection)相比较

参考HITS,BGRM思想:“在二分图中,一个集合中好的顶点是被另一个集合中好的顶点所链接”
不同之处:(1)BGRM 初始化原始权重(设为一),HITS不考虑原始权重
(2)HITS每步迭代都要规范化权重,而BGRM只需在迭代前规范化邻接矩阵

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- aiwanbo.com 版权所有 赣ICP备2024042808号-3

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务